Interconnected hollow carbon nanospheres for stable lithium metal anodes.

نویسندگان

  • Guangyuan Zheng
  • Seok Woo Lee
  • Zheng Liang
  • Hyun-Wook Lee
  • Kai Yan
  • Hongbin Yao
  • Haotian Wang
  • Weiyang Li
  • Steven Chu
  • Yi Cui
چکیده

For future applications in portable electronics, electric vehicles and grid storage, batteries with higher energy storage density than existing lithium ion batteries need to be developed. Recent efforts in this direction have focused on high-capacity electrode materials such as lithium metal, silicon and tin as anodes, and sulphur and oxygen as cathodes. Lithium metal would be the optimal choice as an anode material, because it has the highest specific capacity (3,860 mAh g(-1)) and the lowest anode potential of all. However, the lithium anode forms dendritic and mossy metal deposits, leading to serious safety concerns and low Coulombic efficiency during charge/discharge cycles. Although advanced characterization techniques have helped shed light on the lithium growth process, effective strategies to improve lithium metal anode cycling remain elusive. Here, we show that coating the lithium metal anode with a monolayer of interconnected amorphous hollow carbon nanospheres helps isolate the lithium metal depositions and facilitates the formation of a stable solid electrolyte interphase. We show that lithium dendrites do not form up to a practical current density of 1 mA cm(-2). The Coulombic efficiency improves to ∼ 99% for more than 150 cycles. This is significantly better than the bare unmodified samples, which usually show rapid Coulombic efficiency decay in fewer than 100 cycles. Our results indicate that nanoscale interfacial engineering could be a promising strategy to tackle the intrinsic problems of lithium metal anodes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Template-Free Synthesis of Interconnected Hollow Carbon Nanospheres for High-Performance Anode Material in Lithium-Ion Batteries

The ever-increasing demand for rechargeable batteries in some newly emerging portable electronic devices, advanced medical devices, and in particular, electric vehicles and hybrid electric vehicles has sparked research efforts in developing lithium ion batteries (LIBs) with high storage capacity and excellent rate performance. [ 1 ] Graphite, the mainstay of anode materials for commercialized L...

متن کامل

Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life.

Silicon is a promising candidate for the anode material in lithium-ion batteries due to its high theoretical specific capacity. However, volume changes during cycling cause pulverization and capacity fade, and improving cycle life is a major research challenge. Here, we report a novel interconnected Si hollow nanosphere electrode that is capable of accommodating large volume changes without pul...

متن کامل

Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes

Lithium metal based batteries represent a major challenge and opportunity in enabling a variety of devices requiring high-energy-density storage. However, dendritic lithium growth has limited the practical application of lithium metal anodes. Here we report a nanoporous, flexible and electrochemically stable coating of silica@poly(methyl methacrylate) (SiO2@PMMA) core-shell nanospheres as an in...

متن کامل

Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth

Lithium metal is an attractive anode material for rechargeable batteries, owing to its high theoretical specific capacity of 3,860mAhg−1. Despite extensive research e orts, there are still many fundamental challenges in using lithium metal in lithium-ion batteries. Most notably, critical information such as its nucleation and growth behaviour remains elusive. Here we explore the nucleation patt...

متن کامل

Dopamine-assisted one-pot synthesis of zinc ferrite-embedded porous carbon nanospheres for ultrafast and stable lithium ion batteries.

Polydopamine-derived carbon (C-PDA) nanospheres embedded with zinc ferrite (ZnFe2O4) are synthesized by in situ polymerization of dopamine with zinc and iron species followed by carbonization. The composite nanospheres contain ZnFe2O4 nanoparticles ∼8 nm in size well dispersed in porous C-PDA. The unique structure and morphology endow the nanospheres with excellent rate capability and cycling s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 9 8  شماره 

صفحات  -

تاریخ انتشار 2014